Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform.
نویسندگان
چکیده
We evaluate a data-driven technique to perform bias suppression and modulation normalization of fringe patterns. The proposed technique uses a bidimensional empirical mode decomposition method to decompose a fringe pattern in a set of intrinsic frequency modes and the partial Hilbert transform to characterize the local amplitude of the modes in order to perform the normalization. The performance of the technique is tested using computer simulated fringe patterns of different fringe densities and illumination defects with high local variations of the modulation, and its advantages and limitations are discussed. Finally, the performance of the normalization approach in processing real data is also illustrated.
منابع مشابه
Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform.
Presented method for fringe pattern enhancement has been designed for processing and analyzing low quality fringe patterns. It uses a modified fast and adaptive bidimensional empirical mode decomposition (FABEMD) for the extraction of bidimensional intrinsic mode functions (BIMFs) from an interferogram. Fringe pattern is then selectively reconstructed (SR) taking the regions of selected BIMFs w...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملThe construction of two dimensional Hilbert Huang transform and its application in image analysis
Hilbert Huang Transform is a new developed method for signal processing especially suitable for non-stationary signal processing. In this paper, we propose a two dimensional Hilbert-Huang Transform based on Bidimensional Empirical Mode Decomposition (BEMD) and quaternionic analytic signal. Bidimensional Empirical Mode Decomposition is adaptive signal decomposition method and its decomposition r...
متن کاملTexture Classification based on Bidimensional Empirical Mode Decomposition and Local Binary Pattern
This paper presents a new simple and robust texture analysis feature based on Bidimensional Empirical Mode Decomposition (BEMD) and Local Binary Pattern (LBP). BEMD is a locally adaptive decomposition method and suitable for the analysis of nonlinear or nonstationary signals. Texture images are decomposed to several Bidimensional Intrinsic Mode Functions (BIMFs) by BEMD, which present a new set...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 48 36 شماره
صفحات -
تاریخ انتشار 2009